LogoLogo
  • Tensorleap
  • Examples
    • Semantic Segmentation
    • Image Analysis
    • Sentiment Analysis
    • MNIST Project Walkthrough
    • IMDB Project Walkthrough
  • Quickstart using CLI
  • Guides
    • Full Guides
      • MNIST Guide
        • Dataset Integration
        • Model Integration
        • Model Perception Analysis
        • Advanced Metrics
      • IMDB Guide
        • Dataset Integration
        • Model Integration
        • Model Perception Analysis
        • Advanced Metrics
    • Integration Script
      • Preprocess Function
      • Input Encoder
      • Ground Truth Encoder
      • Metadata Function
      • Visualizer Function
      • Prediction
      • Custom Metrics
      • Custom Loss Function
      • Custom Layers
      • Unlabeled Data
      • Examples
        • CelebA Object Detection (YoloV7)
        • Wikipedia Toxicity (using Tensorflow Datasets)
        • Confusion Matrix
        • CelebA Classification (using GCS)
  • Platform
    • Resources Management
    • Project
    • Dataset
    • Secret Manager
    • Network
      • Dataset Node
      • Layers
      • Loss and Optimizer
      • Visualizers
      • Import Model
      • Metrics
    • Evaluate / Train Model
    • Metrics Dashboard
    • Versions
    • Issues
    • Tests
    • Analysis
      • helpers
        • detection
          • YOLO
    • Team management
    • Insights
  • API
    • code_loader
      • leap_binder
        • add_custom_metric
        • set_preprocess
        • set_unlabeled_data_preprocess
        • set_input
        • set_ground_truth
        • set_metadata
        • add_prediction
        • add_custom_loss
        • set_visualizer
      • enums
        • DatasetMetadataType
        • LeapDataType
      • datasetclasses
        • PreprocessResponse
      • visualizer_classes
        • LeapImage
        • LeapImageWithBBox
        • LeapGraph
        • LeapText
        • LeapHorizontalBar
        • LeapImageMask
        • LeapTextMask
  • Tips & Tricks
    • Import External Code
  • Legal
    • Terms of Use
    • Privacy Policy
Powered by GitBook
On this page

Was this helpful?

  1. API
  2. code_loader
  3. leap_binder

add_custom_loss

code_loader.leap_binder.add_custom_loss

Previousadd_predictionNextset_visualizer

Last updated 2 years ago

Was this helpful?

The purpose of the leap_binder.add_custom_loss function is to register the to be used within the platform. This function adds the custom loss function to the selection list within the CustomLoss node.

code_loader.leap_binder.add_custom_loss(
    function=CustomCallableInterface,
    name=str
)
Args

function

(CustomCallableInterface) This parameter points to the custom Loss Function.

name

(str) with the given name of the custom loss.

Examples

Basic Usage

import numpy as np
from code_loader import leap_binder
...
def weighted_categorical_crossentropy(y_true, y_pred):
    # scale predictions so that the class probas of each sample sum to 1
    y_pred /= K.sum(y_pred, axis=-1, keepdims=True)
    # clip to prevent NaN's and Inf's
    y_pred = K.clip(y_pred, K.epsilon(), 1 - K.epsilon())
    # calc
    weights = np.array([0.5, 2.1, 3, 4, 4, 4, 4, 4])
    loss = y_true * K.log(y_pred) * weights
    loss = -K.sum(loss, -1)
    return loss

...
leap_binder.add_custom_loss(
    function=weighted_categorical_crossentropy,
    name='weighted_categorical_crossentropy'
)
Custom Loss Function(s)