@tensorleap_custom_metric
code_loader.inner_leap_binder.leapbinder_decorators.tensorleap_preprocess.tensorleap_custom_metric
@tensorleap_custom_metric(name='metrics',
direction=MetricDirection.Downward,
compute_insights=None)
def metrics(
tensor_1: npt.NDArray[np.float32],
tensor_2: npt.NDArray[np.float32],
...
) -> Union[npt.NDArray[np.float32], Dict[str, npt.NDArray[np.float32]]]:
passArgs
Metric Function inputs:
Metric Function outputs:
Examples
Basic Usage
Last updated
Was this helpful?

