@tensorleap_load_model
code_loader.inner_leap_binder.leapbinder_decorators.tensorleap_load_model
import os
from code_loader.contract.datasetclasses import PredictionTypeHandler
from code_loader.inner_leap_binder.leapbinder_decorators import tensorleap_load_model
import tensorflow as tf
prediction_type1 = PredictionTypeHandler('classes',[str(i) for i in range(10)])
@tensorleap_load_model([prediction_type1])
def load_model():
dir_path = os.path.dirname(os.path.abspath(__file__))
model_path = 'model/model.h5'
cnn = tf.keras.models.load_model(os.path.join(dir_path, model_path))
return cnn
Args
prediction_types
(Optional, List[PredictionTypeHandler]) This property defines the outputs of the model uploaded to Tensorleap: their names, labels, and channels_dim (=1 for channels first and =-1 for channels last).
PredictionTypes Examples
MNIST example
One output, which we name classes that has 10 channels, each a logit for the classification of a digit
YOLO example
Four outputs:
a conctatenated prediction with #channels = 4 + #classes
Three scales, with #channels of 20,40,80
Last updated
Was this helpful?

