Search…
⌃K

add_prediction

code_loader.leap_binder.add_prediction
The purpose of the leap_binder.add_prediction function is to describe the prediction(s) tensors for visualization and analysis purposes. This function adds a prediction type, which later can be assigned to the model graph prediction node(s).
code_loader.leap_binder.add_prediction(
name=str,
labels=List[str]
)
Args
Text
name
(str) with the given name of the input, e.g. image
labels
(List[str]) an array containing the labels associated with this prediction

Examples

Basic Usage

from code_loader.contract.enums import Metric
...
LABELS = ['0','1','2','3','4','5','6','7','8','9']
leap_binder.add_prediction(
name='predicted_digit',
labels=LABELS
)
Full script usage can be found at Integration Script.

Guides

Full examples can be found at the Dataset Integration section of the following guides: