LogoLogo
  • Tensorleap
  • Examples
    • Semantic Segmentation
    • Image Analysis
    • Sentiment Analysis
    • MNIST Project Walkthrough
    • IMDB Project Walkthrough
  • Quickstart using CLI
  • Guides
    • Full Guides
      • MNIST Guide
        • Dataset Integration
        • Model Integration
        • Model Perception Analysis
        • Advanced Metrics
      • IMDB Guide
        • Dataset Integration
        • Model Integration
        • Model Perception Analysis
        • Advanced Metrics
    • Integration Script
      • Preprocess Function
      • Input Encoder
      • Ground Truth Encoder
      • Metadata Function
      • Visualizer Function
      • Prediction
      • Custom Metrics
      • Custom Loss Function
      • Custom Layers
      • Unlabeled Data
      • Examples
        • CelebA Object Detection (YoloV7)
        • Wikipedia Toxicity (using Tensorflow Datasets)
        • Confusion Matrix
        • CelebA Classification (using GCS)
  • Platform
    • Resources Management
    • Project
    • Dataset
    • Secret Manager
    • Network
      • Dataset Node
      • Layers
      • Loss and Optimizer
      • Visualizers
      • Import Model
      • Metrics
    • Evaluate / Train Model
    • Metrics Dashboard
    • Versions
    • Issues
    • Tests
    • Analysis
      • helpers
        • detection
          • YOLO
    • Team management
    • Insights
  • API
    • code_loader
      • leap_binder
        • add_custom_metric
        • set_preprocess
        • set_unlabeled_data_preprocess
        • set_input
        • set_ground_truth
        • set_metadata
        • add_prediction
        • add_custom_loss
        • set_visualizer
      • enums
        • DatasetMetadataType
        • LeapDataType
      • datasetclasses
        • PreprocessResponse
      • visualizer_classes
        • LeapImage
        • LeapImageWithBBox
        • LeapGraph
        • LeapText
        • LeapHorizontalBar
        • LeapImageMask
        • LeapTextMask
  • Tips & Tricks
    • Import External Code
  • Legal
    • Terms of Use
    • Privacy Policy
Powered by GitBook
On this page

Was this helpful?

  1. Guides
  2. Integration Script

Custom Layers

You can write your own custom layers, and integrate them into your Tensorleap model.

To set up your custom layer, open the Dataset editor and add a class that describes your custom layer. Then, connect your custom layer with the leap_binder object to support your layer. For example, here we add a custom dense layer:

# This class must inherit from tf.keras.layers.Layer
class CustomDense(tf.keras.layers.Layer):
    def __init__(self, n, **args):
        super(CustomDense, self).__init__()
        self.n = n
        self.dense = tf.keras.layers.Dense(self.n)
    
    def call(self, inputs):
        return self.dense(inputs) 
    
    def get_config(self):
        config = super().get_config()
        config.update({
            "n": self.n,
        })
        return config

leap_binder.set_custom_layer(CustomDense, "CustomDense")

Now, you can upload a model that includes these layers by following the Import Model guide.

PreviousCustom Loss FunctionNextUnlabeled Data

Last updated 2 years ago

Was this helpful?