LogoLogo
  • Tensorleap
  • Examples
    • Semantic Segmentation
    • Image Analysis
    • Sentiment Analysis
    • MNIST Project Walkthrough
    • IMDB Project Walkthrough
  • Quickstart using CLI
  • Guides
    • Full Guides
      • MNIST Guide
        • Dataset Integration
        • Model Integration
        • Model Perception Analysis
        • Advanced Metrics
      • IMDB Guide
        • Dataset Integration
        • Model Integration
        • Model Perception Analysis
        • Advanced Metrics
    • Integration Script
      • Preprocess Function
      • Input Encoder
      • Ground Truth Encoder
      • Metadata Function
      • Visualizer Function
      • Prediction
      • Custom Metrics
      • Custom Loss Function
      • Custom Layers
      • Unlabeled Data
      • Examples
        • CelebA Object Detection (YoloV7)
        • Wikipedia Toxicity (using Tensorflow Datasets)
        • Confusion Matrix
        • CelebA Classification (using GCS)
  • Platform
    • Resources Management
    • Project
    • Dataset
    • Secret Manager
    • Network
      • Dataset Node
      • Layers
      • Loss and Optimizer
      • Visualizers
      • Import Model
      • Metrics
    • Evaluate / Train Model
    • Metrics Dashboard
    • Versions
    • Issues
    • Tests
    • Analysis
      • helpers
        • detection
          • YOLO
    • Team management
    • Insights
  • API
    • code_loader
      • leap_binder
        • add_custom_metric
        • set_preprocess
        • set_unlabeled_data_preprocess
        • set_input
        • set_ground_truth
        • set_metadata
        • add_prediction
        • add_custom_loss
        • set_visualizer
      • enums
        • DatasetMetadataType
        • LeapDataType
      • datasetclasses
        • PreprocessResponse
      • visualizer_classes
        • LeapImage
        • LeapImageWithBBox
        • LeapGraph
        • LeapText
        • LeapHorizontalBar
        • LeapImageMask
        • LeapTextMask
  • Tips & Tricks
    • Import External Code
  • Legal
    • Terms of Use
    • Privacy Policy
Powered by GitBook
On this page

Was this helpful?

  1. Platform
  2. Network

Visualizers

Visualize model graph tensors using Visualizers

PreviousLoss and OptimizerNextImport Model

Last updated 2 years ago

Was this helpful?

Neural networks are made up of components that process generic, undefined data. In order to make sense of the data, Tensorleap enables you to visualize the data contained in any node, with the exception of the Optimizer, using a Visualizer node. You can visualize the input(s), output(s) (prediction), ground truth(s), and intermediate tensors. When running , the visualizations related to each Visualizer node is shown on the left panel.

When performing , error analysis algorithms analyze the sample's error throughout the model and project it to each input. This will generate various heat-maps highlighting different features. Therefore, at least one connection of the (model-graph input) must be connected to a Visualizer.

You can write your own Custom Visualizers in the Integration Script (see ), or use one of the following out-of-the-box Decoders:

  • HorizontalBar - visualize numeric data as horizontal bar with labels

  • Image - visualize 2D image

  • Graph - visualize numeric data as a graph

  • Numeric - presents a number or an array of numbers

  • ImageMask - visualize an image and an overlay mask (commonly used in image segmentation)

  • TextMask - visualize text and an overlay mask (commonly used in text segmentation)

Add a Visualizer Node

To add a Visualizer to the model graph, follow the following steps:

  1. On the Network view, right-click anywhere and select Visualizer from the menu.

  2. (optional) - Add and connect an additional Visualizer nodes to selected nodes' outputs.

This example demonstrates how to add visualizers to an image classification model. An image decoder is added to the input, and two HorizontalBar visualizers are added to the prediction and ground-truth in order to compare the two:

Text - tokens representation of text (for token-to-text Visualizer, use the with your tokenizer)

When the Visualizer node appears in the Network view, click it to open a panel to the right. From here, you can set the Selected Visualizer to one of the out-of-the-box Decoders, or custom Decoders, set in the Integration Script (see ).

Connect the output you to the Visualizer node. (at least one visualizer must be connected)

Decoder Function
Visualizer Function
Dataset Node
Dataset Node
Visualizer Function
Sample Analysis
Sample Analysis
Sample Analysis
Visualizers (click-to-zoom)
Add Visualizers