Model Integration
Project Setup
Dataset Block Setup
Set Model Layers
Importing a Model from Tensorflow or PyTorch
import tensorflow as tf
MAX_FEATURES = 10000
SEQUENCE_LENGTH = 250
vectorized_inputs = tf.keras.Input(shape=250, dtype="int64")
x = tf.keras.layers.Embedding(MAX_FEATURES + 1, SEQUENCE_LENGTH)(vectorized_inputs)
x = tf.keras.layers.Dropout(0.2)(x)
x = tf.keras.layers.Dense(28, activation='relu')(x)
x = tf.keras.layers.GlobalAveragePooling1D()(x)
x = tf.keras.layers.Dropout(0.2)(x)
output = tf.keras.layers.Dense(2, activation='softmax')(x)
model = tf.keras.Model(inputs=vectorized_inputs, outputs=output)
model.save('imdb-dense.h5')Import Model


Add Loss and Optimizer

Add Visualizers
Dataset Input Visualizer
Prediction and Ground Truth Visualizers
Save Network Version


Training

Metrics
Add a Dashboard and Dashlets



89% AccuracyUp Next - Model Perception Analysis
Last updated
Was this helpful?


