Model Integration
Project Setup
Dataset Block Setup
Set Model Layers
Importing a Model from Tensorflow or PyTorch
import tensorflow as tf
input = tf.keras.layers.Input(shape=(28, 28, 1))
layer = tf.keras.layers.Conv2D(32, [3, 3], activation='relu')(input)
layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(layer)
layer = tf.keras.layers.Conv2D(64, [3, 3], activation='relu')(layer)
layer = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(layer)
layer = tf.keras.layers.Flatten()(layer)
layer = tf.keras.layers.Dropout(0.5)(layer)
output = tf.keras.layers.Dense(10, activation='softmax')(layer)
model = tf.keras.Model(inputs=input, outputs=output)
model.save('mnist-cnn.h5')Import Model

Build Model
Tensorleap Model Integration Script
Opening the Model Version in the UI and Set the Dataset Block

Add Loss and Optimizer

Add Visualizers
Dataset Input Visualizer
Prediction and Ground Truth Visualizer

Save Network Version


Training

Metrics
Add a Dashboard and Dashlets

Overview


98% AccuracyUp Next - Model Perception Analysis
Last updated
Was this helpful?



