@tensorleap_metadata
code_loader.inner_leap_binder.leapbinder_decorators.tensorleap_preprocess.tensorleap_metadata
The tensorleap_metadata
decorates a Metadata Function.
@tensorleap_metadata(name='metadata_sample_index', metadata_type={"label":DatasetMetadataType.int, "is_circle": DatasetMetadataType.bool})
def metadata_sample_index(idx: int, preprocess: PreprocessResponse) ->
...
Union[int,str,bool,float,Dict[str,Union[int,str,bool,float]]]:
pass
metadata_type
(DatasetMetadataType, optional) This property helps visualize the metadata data.
For a float ground truth, use
DatasetMetadataType.float
For a string ground truth, use
DatasetMetadataType.string
For a int ground truth, use
DatasetMetadataType.int
For a boolean ground truth, use
DatasetMetadataType.boolean
For a dictionary return a dictionary that maps key name to key type
Providing MetadataType becomes mendatory if some of the samples has a "None" value for the metadata
name
(str) The given name of the metadata, e.g. label.
Examples
Basic Usage
from code_loader.contract.datasetclasses import PreprocessResponse
from code_loader.inner_leap_binder.leapbinder_decorators import tensorleap_custom_loss
import numpy as np
...
@tensorleap_metadata(name='metadata_sample_index', metadata_type={"label":DatasetMetadataType.int, "is_circle": DatasetMetadataType.bool})
def metadata_label(idx: int, preprocess: PreprocessResponse) -> Dict[str,Union[int, bool]:
return return {
'label': int_metadata_creator(preprocess, idx),
'is_circle': bool_metadata_creator(preprocess, idx),
}
Usage within the full script can be found at Dataset Script.
Guides
Full examples can be found at the Dataset Integration section of the following guides:
Last updated
Was this helpful?